Reverse order law for generalized inverses with indefinite Hermitian weights

نویسندگان

چکیده

In this paper, necessary and sufficient conditions are given for the existence of Moore-Penrose inverse a product two matrices in an indefinite inner space (IIPS) which reverse order law holds good. Rank equivalence formulas with respect to IIPS provided open problem is at end.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on the Reverse Order Law for Generalized Inverses

The reverse order rule (AB)† = B†A† for the Moore-Penrose inverse is established in several equivalent forms. Results related to other generalized inverses are also proved.

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

Reverse order laws for {1, 2, 3}-generalized inverses

In this paper, we present purely algebraic necessary and sufficient conditions for reverse order laws for {1, 2, 3} and {1, 2, 4}-generalized inverses on the set of matrices. 2010Mathematics Subject Classification: 15A09

متن کامل

Reverse order laws for the weighted generalized inverses

In this paper, we offer new necessary and sufficient conditions for the reverse order laws to hold for the weighted generalized inverses of matrices. 2010 Mathematics Subject Classification: 15A09

متن کامل

the reverse order law for moore-penrose inverses of operators on hilbert c*-modules

suppose $t$ and $s$ are moore-penrose invertible operators betweenhilbert c*-module. some necessary and sufficient conditions are given for thereverse order law $(ts)^{ dag} =s^{ dag} t^{ dag}$ to hold.in particular, we show that the equality holds if and only if $ran(t^{*}ts) subseteq ran(s)$ and $ran(ss^{*}t^{*}) subseteq ran(t^{*}),$ which was studied first by greville [{it siam rev. 8 (1966...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2303699k